Tetrahedron Letters No. 22, pp 1859 - 1862, 1977. Pergamon Press. Printed in Great Britain.

QUALITATIVE MO INTERPRETATIONS OF AB INITIO CALCULATIONS

B. M. Gimarc¹ Department of Chemistry Princeton University Princeton, New Jersey 08540

(Received in USA 4 February 1977; received in UK for publication 19 April 1977)

Elsewhere I have used qualitative MO arguments to predict that molecules and ions of the general formula AH_4 with 6 valence electrons should be square planar rather than tetrahedral in shape.² Recently Schleyer, Pople, and coworkers³ have published results of ab initio MO calculations on the 6 electron series BeH_4 , BH_4^+ , and CH_4^{2+} . They report that indeed these species do have lower energy in the square planar geometry. However, their studies went beyond angular geometry variations. They found square planar BeH_4 to be unstable with respect to BeH_2 and H_2 and that CH_4^{2+} dissociates into the lower energy products CH_3^+ and H^+ . For BH_4^+ they found stable structures of C_{2v} symmetry that correspond to a slightly bent BH_2^+ unit loosely associated with H_2 . These $H_2B^+\cdots H_2$ structures were of nearly equal energy and only a couple of kcal/mole below the energy of separated BH_2^+ and H_2 . This seemingly bewildering variety of results for rather similar systems can be understood with the aid of qualitative MO ideas plus simple electrostatic arguments.

Walsh's rules^{2,4} say that 6 electron AH_4 molecules should be square planar and 4 electron AH_2 molecules should be linear. Figure 1 is the correlation diagram for the dissociation of square planar AH_4 into linear AH_2 and H_2 . Assuming that the dissociation follows C_{2v} symmetry, the process is symmetry allowed.⁵ Electrons flow smoothly from reactant energy levels to fill the appropriate energy levels of the correct products. From qualitative MO assumptions, the σ_u orbital of linear AH_2 has exactly the same energy as the e_u pair of square planar AH_4 . The nodeless σ_p MO of AH_2 should be slightly higher but otherwise

1859

comparable in energy to the nodeless a_{1g} MO of AH_4 . Whether the dissociation $AH_4 + AH_2 + H_2$ is exothermic or endothermic depends on the relative energies of $\sigma_g(H_2)$ and $\sigma_u(AH_2)$. The energy of $\sigma_g(H_2)$ will be the same whether the reactant is BeH_4 , BH_4^+ , or CH_4^{2+} . The energy of $\sigma_u(AH_2)$ depends on the energy of the 2p AO's of the central atom A. For Be, with low electronegativity and high energy 2p AO's, the energy of $\sigma_u(AH_2)$ is higher than that of $\sigma_g(H_2)$ and the dissociation of BeH_4 into BeH_2 and H_2 would be exothermic as computed by Schleyer, Pople, and co-workers and as implied by the order of product energy levels in Figure 1. Boron and carbon have progressively larger electronegativities and lower energy 2p AO's and these move the $\sigma_u(AH_2)-e_u(AH_4)$ level to lower energies. For BH_4^+ , the energies of $\sigma_g(H_2)$ and $\sigma_u(AH_2)$ must be about the same to account for the

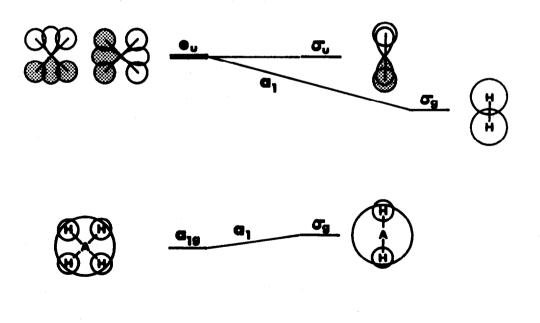


Figure 1.
$$AH_4(D_{4h}) \xrightarrow{C_{2v}} AH_2(D_{ooh}) + H_2$$

loosely bound $H_2B^+ \cdots H_2$ complex. For CH_4^{2+} , $\sigma_u(AH_2)$ must be lower than $\sigma_g(H_2)$, making the reaction $CH_4^{2+} \rightarrow CH_2^{2+} + H_2$ endothermic, blocking the dissociation. Instead CH_4^{2+} breaks up into CH_3^+ and H^+ . But why does CH_4^{2+} give up H^+ while BeH₄ and BH₄⁺ do not? Figure 2 is the correlation diagram for the dissociation of square planar AH₄ into planar triangular AH₃ and H. Again, assume a process of C_{2v} symmetry. The hydrogen atom nonbonding 1s AO should be far above the energies of the bonding MO's of AH₄ and AH₃. All 6 electrons of AH₄ flow into the AH₃ product orbitals, leaving the hydrogen 1s AO empty and producing H⁺. Hydrogen 1s and A atom 2p AO overlap differences between $e_u(AH_4)$ and $e'(AH_3)$ clearly show that the e' levels of product are above the energy of the related e_u levels of reactant, making the dissociation endothermic for any A and blocking the process. This conclusion is correct for BeH₄ and BH₄⁺ but the dissociation of CH_4^{2+} occurs anyway. Why?

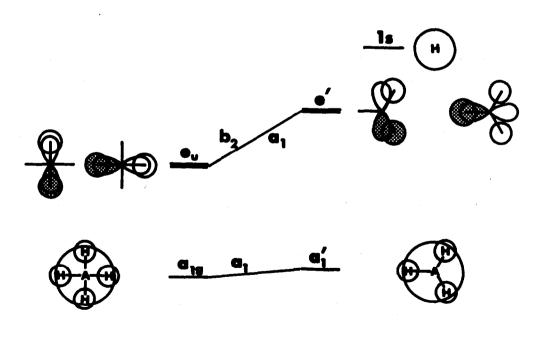


Figure 2. $AH_4(D_{4h}) \xrightarrow{C_{2v}} AH_3(D_{3h}) + H$

The qualitative MO model and the extended Hückel method on which the qualitative model is based fail to account properly for large changes in electrostatic potential.^{6,7} Internal electrostatic repulsions clearly increase through the series BeH₄, BH₄⁺, and CH₄²⁺. The dissociation of BeH₄ into BeH₃⁻ and H⁺ would separate opposite charges. Both MO and electrostatic energetics oppose this process. The dissociation of BH₄⁺ into BH₃ and H⁺ would produce no new ions but it would lower internal electrostatic repulsions in BH₄⁺. Electrostatic repulsions in CH₄²⁺ could be substantially reduced by dissociation into two ions: CH₃⁺ and H⁺. This electrostatic driving force for dissociation of H⁺, reversed in direction in BeH₄ and small or zero in BH₄⁺, is large in CH₄²⁺ where it apparently outweighs the qualitative MO energetics. Similar considerations are not appropriate for the processes summarized in Figure 1 because the product projected in each case is neutral H₂.

This research was sponsored by a grant from the National Science Foundation.

References and Notes

- On leave from Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208.
- 2. B. M. Gimarc, Accounts Chem. Res., 7, 384 (1974).
- J. B. Collins, P. v. R. Schleyer, J. S. Binkley, J. A. Pople, and L. Radom, J. Am. Chem. Soc., 98, 3436 (1976).
- 4. A. D. Walsh, J. Chem. Soc., 2260 (1975), and papers immediately following.
- 5. R. Hoffmann and R. B. Woodward, Accounts Chem. Res., <u>1</u>, 17 (1968).
- 6. R. Hoffmann, J. Chem. Phys., 40, 2480 (1964).
- L. C. Allen, "Why Three Dimensional Hückel Theory Works and Where it Breaks Down," in Sigma Molecular Orbital Theory, O. Sinanoğlu and K. Wiberg, Eds., Yale University Press, 1970, p. 227.